In the largest study of its kind, scientists today report how combining health data with whole genome sequence (WGS) data in patients with cancer can help doctors provide more tailored care for their patients.
- Study shows that combining whole genome sequence and clinical data together at scale supports the delivery of precision cancer care, where cancer diagnosis and treatment is tailored to the individual patient
- Results support increased use of genomic testing in cancer care via the NHS Genomic Medicine Service
- The research shows the value of data from the ground-breaking 100,000 Genomes Project to improve understanding of cancer and help researchers to develop new treatments.
The research, published today in Nature Medicine, shows that linking WGS data to real-world clinical data can identify changes in cancer DNA that may be relevant for an individual patient’s care, for example by helping identify what treatment might work best for them based on their cancer.
The study, led by Genomics England, NHS England, Queen Mary University of London, and the University of Westminster, analysed data covering over 30 types of solid tumours collected from more than 13,000 participants with cancer in the 100,000 Genomes Project (opens in a new tab). By looking at the genomic data alongside routine clinical data collected from participants over a 5-year period, such as hospital visits and the type of treatment they received, scientists were able to find specific genetic changes in the cancer associated with better or worse survival rates and improved patient outcomes.
The study showed that WGS could provide a more comprehensive view of a tumour's genetic landscape by detecting various genetic changes using a single test. This research uncovered significant findings across different cancer types, such as:
- Over 90% of brain tumours and over 50% of colon and lung cancers showed genetic changes that could affect how patients are treated, guiding decisions about surgery or specific treatments they might need.
- In more than 10% of sarcomas, larger DNA changes, known as structural variants, were identified that can impact clinical care and treatment.
- In over 10% of ovarian cancers, the study pinpointed inherited risks offering crucial insights for clinical care.
The analysis also revealed patterns across several cancers and uncovered different types of genetic changes that might explain response to treatment or predict possible patient outcomes. Together, the findings show the value of combining genomic and clinical data at scale to help healthcare professionals make the best treatment decisions with their patients.
WGS allows us to read someone’s entire genome – the 3.2 billion letters that make up our DNA – with just one single test. For patients with cancer, this technique can be used to compare DNA from their tumour to the DNA in their healthy tissues.
The 100,000 Genomes Project laid the foundations for the NHS to become the first national health system to offer WGS as part of routine care via the NHS Genomic Medicine ServiceThis study shows the value of investment in national infrastructure to generate clinical and genomic data at scale on patients and participants who consent to research in an NHS setting - allowing researchers to uncover insights to drive improved diagnosis, care and treatment for patients with cancer.
Dr Nirupa Murugaesu, Principal Clinician - Cancer Genomics and Clinical Studies at Genomics England, Oncology Consultant and Cancer Genomics Lead at Guy's and St Thomas' NHS Foundation Trust said: "This study is an important milestone in genomic medicine. We are starting to realise the promise of precision oncology that was envisioned ten years ago when the 100,000 Genomes Project was launched.
“We are showing how cancer genomics can be incorporated into mainstream cancer care across a national health system and the benefits that can bring patients. By collecting long-term clinical data alongside genomic data, the study has created a first-of-its-kind resource for clinicians to better predict outcomes and tailor treatments, which will allow them to inform, prepare, and manage the expectations of patients more effectively.”
Professor Dame Sue Hill, Chief Scientific Officer for NHS England and Senior Responsible Officer for Genomics, said: “With this new study, data from the 100,000 Genomes Project continues to build the evidence for the use of genomic testing to deliver precise molecular diagnoses to inform personalised treatments and interventions for patients.
“The insights gained in this study, in which genomic patterns or profiles have been mapped out in thousands of patients with different types of cancer, support and inform the NHS Genomic Medicine Service in providing a comprehensive genomic testing service for patients with cancer and signals a promising future for healthcare as we continue to hone and enhance the NHS use of genomics and tailor interventions for improved outcomes.”
Dr Patrick Tarpey, lead scientist for solid cancer in the East Genomic Laboratory Hub, based at Cambridge University Hospitals NHS Foundation Trust said: 'We very much welcome this landmark study and the potential it brings for improving treatments and care for our solid tumour patients. We recognise the contribution of all those patients who have provided their health data to the 100,000 Genomes Project thus improving the diagnosis, treatment and ultimately survival for cancer patients receiving treatments today.'
Research publication: ‘Insights for precision oncology from the integration of genomic and clinical data of 13,880 tumors from the 100,000 Genomes Cancer Programme’ Sosinsky et al. Nature Medicine. DOI: 10.1038/s41591-023-02682-0